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Fourier Analysis for Continuous-Time Signals and Systems

The purpose of this lab is to

▪ Learn the Fourier transform for non-periodic signals as an

extension of Fourier series for periodic signals.

▪ Study properties of the Fourier transform.

▪ Understand energy and power spectral density concepts.



Fourier Series

▪ Fourier Series: Any periodic function can be expressed as the sum

of sines and/or cosines of different frequencies, each multiplied by a

different coefficient.



Analysis of Non-Periodic Continuous-Time Signals

▪ We must also realize that we often work with signals that are not

necessarily periodic.

▪ We would like to have similar capability when we use non-periodic

signals in conjunction with linear and time-invariant systems.

▪ These efforts will lead us to the Fourier transform for continuous-

time signals.



Analysis of Non-Periodic Continuous-Time Signals

▪ Consider the non-periodic signal x(t)

▪ We already know how to represent periodic signals in the frequency

domain.



Analysis of Non-Periodic Continuous-Time Signals

▪ Let us construct a periodic extension of the signal x(t) by

repeating it at intervals of T0.

( )x t



Fourier Transform For Continuous-Time Signals



Fourier Transform For Continuous-Time Signals



Analysis of Non-Periodic Continuous-Time Signals

▪ The forward transform

▪ The inverse transform

▪ The relationship between x(t) and X(ω) is in the form



Sinc Function and Normalized Sinc Function 

sinc( )x

x

sin( )
sinc( )

sin( )
sinc( )

x
x

x

x
x

x





=

=



Sinc Function and Normalized Sinc Function 



Sinc Function



Unit-Pulse Function

▪ We will define the unit-pulse function as a rectangular pulse with

unit width and unit amplitude, centered around the origin.



Example 4.12: Fourier Transform of a Rectangular Pulse



Example 4.12 – Solution 
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Example 4.12 – Solution 
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Example 4.12 – Solution 



Problem 4.18



Problem 4.18 (a) – Solution 



Problem 4.18 (c) – Solution 



Example 4.14: Fourier Transform of the Unit-Impulse Function



Example 4.15: Fourier Transform of a Right-Sided Exponential Signal



Example 4.15 – Solution 

 

0 0

( ) ( )

0 0

( ) ( )

1

1
0 1

1

at j t

at j t at j t

t a j t a j

X e u t e dt

e e dt e dt

e dt e
a j

a j

a j



 

 











− −

−

 

− − − −



− + − +

=

= =

−
= =

+

−
= −

+

=
+



 





Example 4.15 – Book Solution 



Example 4.15 – Book Solution 



Example 4.16: Fourier Transform of a Two-Sided Exponential Signal



Example 4.16 – Solution 
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Example 4.16 – Book Solution 



Example 4.16 – Book Solution  



Properties of the Fourier Transform: Linearity

▪ Fourier transform is a linear operator.



Properties of the Fourier Transform: Linearity Proof



Properties of the Fourier Transform: Duality

▪ The transform relationship between x(t) and X(ω) is defined by the

inverse and forward Fourier transform integrals.



Properties of the Fourier Transform: Duality (using f instead of ω)

▪ The transform relationship between x(t) and X(ω) is defined by the

inverse and forward Fourier transform integrals.



Properties of the Fourier Transform: Duality (using f instead of ω) 



Problem 4.24



Problem 4.24 – Solution 



Properties of the Fourier Transform: Time Shifting



Problem 4.21  



Problem 4.21 – Solution 



Properties of the Fourier Transform: Frequency Shifting



Properties of the Fourier Transform: Modulation Property



Properties of the Fourier Transform: Time and Frequency Scaling



Properties of the Fourier Transform: Convolution Property



Properties of the Fourier Transform: Convolution Property



Properties of the Fourier Transform: Convolution Property



Properties of the Fourier Transform: Convolution Property



Properties of the Fourier Transform: Multiplication of Two Signals



Fourier Transforms of Some Basic Signals



Fourier Transform Properties



Energy and Power in the Frequency Domain

▪ We will discuss a very important theorem of Fourier series and

transform known as Parseval’s theorem.

▪ Parseval’s theorem can be used as the basis of computing energy or

power of a signal from its frequency domain representation.



Parseval’s Theorem



Energy and Power Spectral Density

▪ Power spectral density of a periodic signal

▪ Energy spectral density of a non-periodic signal



Problem 4.38



Problem 4.38 (a) – Solution 



Problem 4.38 (b) – Solution 



Problem 4.38 (c) – Solution 



Example 4.39



Example 4.39 – Solution 



Example 4.39 – Solution 



Filtering in the Frequency Domain



Filtering in the Frequency Domain: Lowpass Filters



Filtering in the Frequency Domain: Lowpass Filters



Filtering in the Frequency Domain: Highpass Filters



Image Enhancement Using the Laplacian in the Frequency Domain



Image Enhancement in the Frequency Domain



Periodic Noise Reduction Using Frequency Domain
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