Digital Signal Processing

Lab 08: Fourier Analysis for CT Signals and Systems




Fourier Analysis for Continuous-Time Signhals and Systems

The purpose of this lab 1s to

Learn the Fourier transform for non-periodic signals as an
extension of Fourier series for periodic signals.
*  Study properties of the Fourier transform.

» Understand energy and power spectral density concepts.



Fourier Series

= Fourier Series: Any periodic function can be expressed as the sum
of sines and/or cosines of different frequencies, each multiplied by a

different coefficient.

YWWWWWWWWWWWWWWWWWY

VWYYV
JAVAVAVAVAVAN



Analysis of Non-Periodic Continuous-Time Signals

* We must also realize that we often work with signals that are not
necessarily periodic.

= We would like to have similar capability when we use non-periodic
signals 1n conjunction with linear and time-invariant systems.

* These efforts will lead us to the Fourier transform for continuous-

time signals.



Analysis of Non-Periodic Continuous-Time Signals

* (Consider the non-periodic signal x(z)

z (1)

\-/ t

= We already know how to represent periodic signals 1n the frequency

domain.



Analysis of Non-Periodic Continuous-Time Signals

= Let us construct a periodic extension x(¢#) of the signal x(¢) by

repeating it at intervals of 7.
x (1)

A
Y

Period = Tj



Fourier Transform For Continuous-Time Signals

Fourier transform for continuous-time signals:

Analysis equation: (Forward transform)

Synthesis equation: (Inverse transform)

1 > -
r(t) = o / X (w) e dw



Fourier Transform For Continuous-Time Signals

Fourier transform for continuous-time signals (using f instead of w):

Analysis equation: (Forward transform)

X (f) :/OO x (t) e 727t gt

— OO

Synthesis equation: (Inverse transform)

v =[x () ey



Analysis of Non-Periodic Continuous-Time Signals

= The forward transform

X (w) = Fz(t);

" The inverse transform

z(t) =F {X (w)}
» The relationship between x(7) and X(w) 1s in the form

(1) <2 X (w)



Sinc Function and Normalized Sinc Function

sinc(x)
sinc(x) = sin(x) I
X
sin(7zx) /\

sinc(x) =
TX




Sinc Function and Normalized Sinc Function
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Sinc Function




Unit-Pulse Function

* We will define the unit-pulse function as a rectangular pulse with

unit width and unit amplitude, centered around the origin.

(1, |t <
II(t) = 4
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0, [¢| >
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Example 4.12: Fourier Transform of a Rectangular Pulse

Example 4.12: Fourier transform of a rectangular pulse

Using the forward Fourier transform integral in Eqn. (4.127), find the Fourier transform of
the isolated rectangular pulse signal

shown in Fig. 4.35.

e Ill.".' — Il,.".'
r/2 r/2

Figure 4.35 — [solated pulse with amplitude A and width 7 for Example 4.12.



Example 4.12 — Solution

/9 /2
. 1 .
X(@)= [ (e ™dr=A——e "
/2 —Jw —7/2
/2 /2
A . : A .
= — [cos(—a)t) + jsin(—awt) = —,[COS(CUf) —J s1n(a)t)]
—]0) -—T/2 _.]a) —-7/2
/2 /2
A . A .
——[0—jsin(wr)]] =—sin(wr)
_]a) —7/2 w —7/2
24 . (ot
= —sIn| —
0, 2

24t . (a)rj 2 (a)r)
:—sm AT —sin 5

T
= At sinc (a)_j
2

X(f)=Ar sinc( fr



Example 4.12 — Solution

z (t)

x(t):AH( j

[
-

F {x(?)} = X(w) = At sinc or
27

F{x(t)}=X(f)=Ar sinc(fr)

A

—7/2

T/2




Example 4.12 — Solution

—0.25 0.25




Problem 4.18

4.18. Find the Fourier transform of each of the pulse signals given below:

. (t) =3T0(1)
c. (b)) =2 G)



Problem 4.18 (a) — Solution




Problem 4.18 (c) — Solution
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Example 4.14: Fourier Transform of the Unit-Impulse Function

Example 4.14: Transform of the unit-impulse function

The unit-impulse function was defined in Section 1.3.2 of Chapter 1. The Fourier transform
of the unit-impulse signal can be found by direct application of the Fourier transform integral
along with the sifting property of the unit-impulse function.

F{5(t)}:/_00 §(t) e I dt = eI =1



Example 4.15: Fourier Transform of a Right-Sided Exponential Signal

Example 4.15: Fourier transform of a right-sided exponential signal

Determine the Fourier transform of the right-sided exponential signal
T (t) =e “"ul(t)

with @ > 0 as shown in Fig. 4.43.

Figure 4.43 — Right-sided exponential signal for Example 4.15.



Example 4.15 — Solution

o0

X (@)= [ e “u(t)e ™ dr

_ J'e—ate—ja)tdt _ J'e—af—jwdt
0

0

_ Te_t(a+jw)dt: _1. e—t(a+ja))
0 Cl‘|‘](0 0
—1
=——[0-1]
a+ jw
|

a+ jw



Example 4.15 — Book Solution

Solution: Application of the Fourier transform integral of Eqn. (4.127) to 2 (t) yields
X (w) = / e M (t) e ¥ dt

Changing the lower limit of integral to ¢ = 0 and dropping the factor u (¢) results in

X (w) = / et oI g — / em(tiwt gy 1
0 0 a+ jw

This result in Eqn. (4.155) is only valid for a > 0 since the integral could not have been
evaluated otherwise. The magnitude and the phase of the transform are

1
a—+ jw

1
a? + w?

0 (w) = £X (w) = — tan™" (i)



Example 4.15 — Book Solution

£X (w) (rad)
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Example 4.16: Fourier Transform of a Two-Sided Exponential Signal

Example 4.16: Fourier transform of a two-sided exponential signal

Determine the Fourier transform of the two-sided exponential signal given by

x(t) = e~alt

where a is any non-negative real-valued constant. The signal a (t) is shown in Fig. 4.46.

1
—1/a

Figure 4.46 — T'wo-sided exponential signal x (t) for Example 4.16.



Example 4.16 — Solution

X(w)= I e Ve gt =

—Q0

0 o0 0 0
= J eedt+ e e dt = j et + je*“”“’”dt
el ’ ? )
0 o0
_ 1 e(a—ja))t n —1 e—(a+ja))t
a—jo _a+t+jo .
| —1
=—[1-0]+———[0—1]
a— jo a+ jo
1 N 1 a+jo+a-jo 2a
a-jo a+jo (a-jo)a+jo) o —(jo)
2a

2 2
a +ao



Example 4.16 — Book Solution

Solution: Applying the Fourier transform integral of Eqn. (4.127) to our signal we get

o0 B
X (w) = / eIt g=Iwt gt

— OO0

Recognizing that

—alt| _ eat

N
-
Y

€

t >0 = e altl = 7ot

the transform is

X (W) _/ eat e—jwt dlt JF/ e—fzte—jwt df
0



Example 4.16 — Book Solution

the transform is

X(u.)) / em‘. e—jwt At Jr/ e—ate—jwt dt
0

1 1
= ——
a— Jw a + Jw
- Za
a2 4 w2

—a a



Properties of the Fourier Transform: Linearity

* Fourier transform 1s a linear operator.

71 (1) <2 X ()

7o (1) <2 Xo ()

a1 21 (1) + as zo (1) PR a1 X1 (w) + as Xs (w)



Properties of the Fourier Transform: Linearity Proof

Proof: Using the forward transform equation given by Eqn. (4.127) with the time domain
signal oy x1 (1) + ag oo (t)] leads to:

Flajzi (t) + asxa (1)} / (g 21 (1) + a0 ()] e 7%t dt

—/ oy (t) e 7« dt +f g o (1) e 70 dt

— 00 — 00

= / &I (1’;) e_jwt dt + %) / ) (t) B_jwt dt

—00 — 00

=ay F{x1 (t)} + ag F{z2 (1)}



Properties of the Fourier Transform: Duality

* The transform relationship between x(¢) and X(w) 1s defined by the

inverse and forward Fourier transform integrals.

1 > -
x(t) = oy / X (w) &7 dw

X (w) = /OO z(t) e It dt

— OO

x (1) PN X (w) implies that X (¢) AN 21 x (—w)



Properties of the Fourier Transform: Duality (using f instead of w)

* The transform relationship between x(¢) and X(w) 1s defined by the

inverse and forward Fourier transform integrals.

v =[x () e

X (f) :/OO v (t) e 721t gt

— OO

v (t) <25 X (f) implies that X (t) <2 z(—f)



Properties of the Fourier Transform: Duality (using f instead of w)

—0.5 0.5

T (t) = X (t) = sinc (t)
1

| | |
| | |
—4 =2 2 4

—0.5

0.5



Problem 4.24

4.24. 'The transform pair

—alt| ,F. 2a
8 Y I 2 2
a“ + w

Using this pair along with the duality property, find the
Fourier transform of the signal

x (1) -

T 142




Problem 4.24 — Solution

Using the duality property we have
X(1) <L 27 x (~w)
or equivalently
2a F
a® + 2

27 ¢~ 0l

Multiplying both the numerator and the denominator of the time-domain signal by 4 yields

8a F —d|w|

2me
4 a2+ 4 t?
Let us choose .
4 az =1 = a=—
2
so that A
F 2ne—|w|f2
1+4¢?

Scaling both sides of the transform relationship by 1/2 we obtain the desired result:

2 F _
e |u)|/2
1+4¢t?




Properties of the Fourier Transform: Time Shifting

For a transform pair

it can be shown that
r(t—7) +— X (w)e ¥



Problem 4.21

4.21. Refer to the signal shown in Fig. P.4.19. Find its Fourier transform by starting with
the transform of the unit pulse and using linearity and time shifting properties.

(¢t —0.5) — I (t — 1.5)
(1
1




Problem 4.21 — Solution

Using the unit-pulse function I1 (#) we have
F {1 (t-0.5)} =sinc(f) e /™

and |
F{(t-1.5)} =sinc(f) e 73"/

Utilizing linearity of the Fourier transform

F (1 -0.5)—T1(t - 1.5)} = sinc ( f) [e‘f”f—e—ff”ﬂf



Properties of the Fourier Transform: Frequency Shifting

For a transform pair
r(t) +— X (w)

it can be shown that | .
z(t) e <= X (w—wp)



Properties of the Fourier Transform: Modulation Property

For a transform pair

1t can be shown that

x (t) cos(wot) N

and

x (t) sin(wot) PN

DO | —



Properties of the Fourier Transform: Time and Frequency Scaling

For a transform pair

it can be shown that

r (at) PR X(—)

The parameter a is any non-zero and real-valued constant.



Properties of the Fourier Transform: Convolution Property

For two transform pairs

v (1) <25 Xi(w) and a5 (t) <2 Xs(w)

it can be shown that

v () * 22 (1) < X1 (w) Xo (w)



Properties of the Fourier Transform: Convolution Property

(f*h)(x,y) = (F«H)(u,v)

Fitas Filt(?r anCI:SG
—> transform —>{ function [ > Foune.r
H(u,v) I transform
F(u,v) H(u,v)F(u,v)

Pre- Post-
processing processing
f(x,y) 8(x,y)
Input Filtered
image image



Property

IoN

H)(u,v)

o
>
O
>
-
O

@

(f*h)(x,y) = (F

Properties of the Fourier Transform




Properties of the Fourier Transform: Convolution Property

H(u, v) H(u, v)
>V 1
D(u, v)
H(u, v)
)] ]J_
D(u, v)
H(u, v)
=1 1~

D(u, v)



Properties of the Fourier Transform: Multiplication of Two Signals

For two transform pairs

v (1) <25 X;(w) and 22 (t) <2 X (w)

it can be shown that
xy () 2o (t) +— X1 (w) * X5 (W)

If we choose to use f instead of w, then

1 () 22 (1) < X1 (f) * X2 (f)



Fourier Transforms of Some Basic Signals

Name

Signal

Transform

Rectangular pulse

Triangular pulse
Right-sided exponential
Two-sided exponential

Signum function

Unit impulse
Sinc function

Constant-amplitude signal

Unit-step function

Modulated pulse

z(t) = ATL(t/7)
z(t) = AA(t/7)
z(t) = e u(t)
x (t) = el

x (t) = sgn (t)

z(t) =0 (1)

x (t) = sinc ()

z(t)=1, all ¢
o(t)= =
x(t) =u(t)

X (w) = AT sinc (;—T)

T

X (w) = At sinc? (E)

27
X (w) = a%—ljw
2a
X(w)—aszz
X(w):%
X (w) =
ro-n(2)

X (w)=76(w) j%
X (w) =  sine ((Ud _Q:;.D)T) +




Fourier Transform Properties

Property Signal Transform

Linearity axy (t)+PFra(t) aXy(w)+5Xs(w)

Duality X (t) 21z (—w)

Conjugate x (t) real X" (w) =X (—w)

symmetry Magnitude: X (—w)| = |X (w)|
Phase: 'E)(—w) = —@( )
Real part: X, (—w) =X, (w)
Imaginary part: X; (—w) = —X; (w)

Conjugate x (t) imaginary X*(w)=—-X(—w)

antisymmetry Magnitude: X (—w)| = |X (w)]
Phase: O(—w) = (W) Fw
Real part: X, (—w) = —X, (w)
Imaginary part: X; (—w) = X; (w)

Even signal x(—t) =z (t) Im{X (w)} =0

Odd signal r(—t) = —z(t) Re{X (w)} =0

Time shifting xz(t —7) X (w) e 9w

Frequency shifting x (t) elwot X (w—wp)

Modulation property x (t) cos(wot) 3 [X (w—wo) + X (w + wo)]

Time and frequency scaling

Differentiation in time

Differentiation in frequency

Convolution

Multiplication

Integration

Parseval’s theorem

x (at)

dn
= 2 ()]

(=3t = (1)
x1 (t) = 2o (1)
1 (t) 2 (1)

‘/_; 2(\) dA

1

la| s (a)

X (w)
"X )

Xll (w) X2 (w)

o X1 (w) * X2 (w)

X (w)
Jw

(jw)"
d?l

+ 7 X(0)d (w)

=/ X

[a%s] 1
2 J—




Energy and Power in the Frequency Domain

= We will discuss a very immportant theorem of Fourier series and
transform known as Parseval’s theorem.
= Parseval’s theorem can be used as the basis of computing energy or

power of a signal from its frequency domain representation.



Parseval’s Theorem

For a periodic power signal z (t) with period of Ty and EF'S coefficients {c} it can be shown

that -
& (t)]° dt = > x|’

0 k=—o0

1 to+T10o

To Ji

For a non-periodic energy signal z (¢) with a Fourier transform X (f), the following holds

true:
[ wora= [ xora

— O — 0



Energy and Power Spectral Density

* Power spectral density of a periodic signal

* Energy spectral density of a non-periodic signal

G (f) =X ()



Problem 4.38

4.38. Determine and sketch the power spectral density of the following signals:

a. x (t) = 3 cos (207t)
b. x (t) = 2 cos (207t) + 3 cos (307t)
C. x (t) = 5 cos (2007t) + 5 cos (2007t) cos (307t)



Problem 4.38 (a) — Solution

a. x (t) = 3 cos (207t)
d. For the signal x (1) the fundamental frequency is fop = 10 Hz, and the EFS coefficients are

3
ck_{ 2 - Sz (f)

0, otherwise 9

9
4 4
The power spectral density is [ T

$:(f)=20(F+10)+28(f ~10



Problem 4.38 (b) — Solution

b.  z(t) =2 cos(20nt) + 3 cos (307t)

b.  For the signal x (¢) the fundamental frequency is fy = 10 Hz, and the EES coefficients are

1, k=+2
| Se (f)
o= 3 koss (,
2 A4 A4
0, otherwise
) 1 1
The power spectral density is ‘V T
—- ——— — [ (Hz)
—30 =20 20 30

Sx(f):%6(f+30)+5(f+20)+6(f—20]+%5(f—30)



Problem 4.38 (c) — Solution

C. x (t) = 5 cos (2007t) + 5 cos (2007t) cos (307t)

C. For the signal x (7) the fundamental frequencyis fy =5 Hz, and the EFS coefficients are

5 Sz (f)
-, k=+17 25 25
: AT AT
—, k=4+20
C]C _- 2
2, k=23 » | 2 % | 2
16 16 16 16
0, otherwise T _ T T | T f (Hz)
—100 100

The power spectral density is

Sx(f) = %6(f+230)+%6(f+200)+%5(f+ 170)+§5(f—170)+%5(f—200)+§5(f—230)



Example 4.39

Example 4.39: Power spectral density of a sinusoidal signal

Find the power spectral density of the signal & (¢) = 5 cos (2007t).



Example 4.39 — Solution

Solution: Using Euler’s formula, the signal in question can be written as

_
L S
T (t) — _ ¢ 72007t + = eJQOOﬂ't
2 2
from an inspection of which we conclude that the only significant coefficients in the EFS
representation of the signal are
=
C_1 —C = —
2
with all other coefficients equal to zero. The fundamental frequency is fo = 100 Hz. Using
Eqn. (4.315), the power spectral density is

S, (f) = Z |cn|2 5(f —100n)
—|e_1|? 6 (f +100) + |e1]” 6 (f — 100)
25 25

=T o(f+ 100)+IO(f—100)



Example 4.39 — Solution

Sz (f)

25 20

T I Iz
f (Hz)

—100 100

Figure 4.83 — Power spectral density



Filtering in the Frequency Domain
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Filtering in the Frequency Domain: Lowpass Filters
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Filtering in the Frequency Domain: Lowpass Filters

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
vear. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the year
2000. 4

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yf@r
2000.

(2

ed




Filtering in the Frequency Domain: Highpass Filters




Image Enhancement Using the Laplacian in the Frequency Domain




Image Enhancement in the Frequency Domain




Periodic Noise Reduction Using Frequency Domain
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